Defensive Exploitation

How to Pwn Your Attacker’s Decision-making

Kelly Shortridge (@swagitda_)
ZeroNights 2017
Привет, я Келли
Attackers are human. Their brains have vulns.
Today you’ll learn how to exploit these vulns for defense
We’ll liberate exploitation from the clutches of the few...
...into the hands of the many
How do humans think?
People predict their opponent’s moves by either “thinking” or “learning”
Thinking = modeling how opponents are likely to respond
Our brains work like volatile memory
Learning = predicting how players will act based on prior games / rounds
Humans learn through “error-reinforcement learning” (trial & error)
“Learning rates” = how much experiences factor into one’s decisions
Veksler & Buchler case study: 200 “security games” to test the # of prevented attacks across 4 strategies
Fixed strategy: 10% - 25% of attacks prevented
Game Theory strategy: 50% of attacks prevented
Random strategy: **49.6%** of attacks prevented
Cognitive Modelling strategy: 61% - 77% of attacks prevented
Don’t be replaced by a random SecurityStrategy™ algorithm
How to Pwn Attackers
Perceptual SWOT Analysis
How can strengths be weaknesses?

How can weaknesses be strengths?
Attacker strength = having time to craft an attack
Leverage that “strength” with strategies leading down rabbit holes
Attacker strength = access to known vulns
Confuse them with fake architecture for uncertainty around your systems
Learning Exploitation
Info asymmetry exploitation:
Disrupt the attacker’s learning process
Learning rate exploitation: Introduce unreliability and pre-empt attacker moves
Exploit the fact that you understand the local environment better than attackers
Дезинформация
(disinformation)
Defenders have information their adversaries need to intercept
Hide or falsify data on the legitimate system side
Remove the attacker’s *scientific method* so they can’t test hypotheses
Create honeytokens that look legit & would be useful in attacker recon
Example: Create custom email rejection messages
Then, create a honeydoc for violation of the “Rivia Policy”
Respond to suspicious emails with, “You’ve violated the Rivia policy 21a”
Track when the honeydoc is accessed
Маскировка
(deception)
Non-determinism: different behaviors at different times
Raise costs at the 1st step of the attack: Reconnaissance
Make the attacker **uncertain** of your defensive profile and environment
Attackers now design malware to be VM-aware
Good: Make everything look like a malware analyst’s sandbox
Better: Look like a different malware analyst’s sandbox each time
Put **wolfskins** on the sheep
Mix & match superficially sketchy-looking artifacts on normal systems
Emulate virtual artifacts onto physical machines

https://github.com/fr0gger/RocProtect-V1
VMwareServices.exe
VBoxService.exe
Vmwaretray.exe
VMSrvc.exe
vboxtray.exe
ollydbg.exe
wireshark.exe
fiddler.exe
\\\pipe\cuckoo
cuckoomon.dll
dbghelp.dll
Mac addresses:
"00:0C:29", "00:1C:14",
"00:50:56", "00:05:69"
system32\drivers\VBoxGuest.sys
system32\drivers\VBoxMouse.sys

HKLM\SOFTWARE\Oracle\VirtualBox Guest Additions

C:\cuckoo, C:\IDA
Program Files\Vmware
Make the IsDebuggerPresent function call always return non-zero

Create fake versions of driver objects like \\\.\NTICE and \\\.\SyserDbgMsg

Set KdDebuggerEnabled to 0x03
Load DLLs from AV engines using a Windows loader with a forwarder DLL

ex64.sys (Symantec)
McAVSCV.DLL (McAfee)
SAUConfigDLL.dll (Sophos)
cbk7.sys (Carbon Black)
cymemdef.dll (Cylance)
CSAgent.sys (Crowdstrike)
Deploy lightest weight hypervisor possible for added “wolfskin”

https://github.com/asamy/ksm
https://github.com/ionescu007/SimpleVisor
https://github.com/Bareflank/hypervisor
Conclusion
Start with a perceptive SWOT analysis to gain perspective
Use info asymmetry & learning rate exploitation to beleaguer your adversaries
Дезинформация и маскировка
Worst case, random strategies are just as good as game theory
Клин клином вышибают
(fight fire with fire)
@swagitda_
/in/kellyshortridge
kelly@greywire.net
Suggested reading

- “Know Your Enemy: Applying Cognitive Modeling in the Security Domain,” Veksler, Buchler
- “Deterrence and Risk Preferences in Sequential Attacker–Defender Games with Continuous Efforts,” Payappalli, Zhuang, Jose
- “Improving Learning and Adaptation in Security Games by Exploiting Information Asymmetry,” He, Dai, Ning
- “Behavioral theories and the neurophysiology of reward,” Schultz
- “Evolutionary Security,” and “Measuring Security,” Dan Geer